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Abstract

®

CrossMark

We develop a numerical Brillouin-zone integration scheme for real-time propagation of
electronic systems with time-dependent density functional theory. This scheme is based on the
decomposition of a large simulation into a set of small independent simulations. The
performance of the decomposition scheme is examined in both linear and nonlinear regimes

by computing the linear optical properties of bulk silicon and high-order harmonic generation.
The decomposition of a large simulation into a set of independent simulations can improve the
efficiency of parallel computation by reducing communication and synchronization overhead

and enhancing the portability of simulations across a relatively small cluster machine.

Keywords: time dependent density functional theory, real time electron dynamics, nonlinear

optics, first principles calculations

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent development of laser technologies has enabled the
study of light-induced electron dynamics in ultrafast and
highly-nonlinear regimes [1-3]. In the ultrafast regime,
attosecond electron dynamics in solids has become experimen-
tally accessible, opening a novel avenue for the exploration of
nonequilibrium electron dynamics induced by light [4-9]. In
the highly nonlinear regime, high-order harmonic generation
induced by intense laser fields in solids has been intensively
studied with the goal to develop a novel light-source and to
establish a probe of material properties [10—13]. Laser pro-
cessing is another important application of strong laser pulses
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and laser micromachining with femtosecond laser pulses via
non-thermal processes have attracted much interest [ 14—18].
Despite the significance of these phenomena, understand-
ing of their microscopic properties has still been under devel-
opment because microscopic information of light-induced
electron dynamics is difficult to experimentally access due to
the complex nature of nonequilibrium and nonlinear electron
dynamics in solids. An ab initio electron dynamics simulation
based on time-dependent density functional theory (TDDFT)
[19] has been a powerful tool to investigate such highly-
complex microscopic electron dynamics in solids [20-23].
However, the computational cost of such ab initio electron
dynamics simulation tends to be large, and the simulation often
requires a large supercomputer. Part of the origin of the large
computational cost is the large k-point sampling requirement,
which reflects the continuous nature of energy bands of solids.
In this work, we consider a two-step k-point sampling pro-
cedure to evaluate a large k-point sampling with a set of
relatively small k-point samplings. This sampling procedure

© 2021 The Author(s). Published by IOP Publishing Ltd
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allows one to decompose a computationally heavy electron
dynamics simulation into a set of relatively small electron
dynamics simulations. As a result, each simulation can be exe-
cuted with a smaller size of cluster machine, and the prop-
agation of the whole electronic system can be evaluated by
accumulating independent runs of a set of small simulations.
Furthermore, the proposed two-step k-point sampling is almost
perfectly parallelizable since each decomposed simulation can
be executed independently. Therefore, the two-step procedure
offers a novel degree of freedom for efficient computation of
electron dynamics simulations in solids.

This paper is organized as follows. In section 2, we first
revisit electron dynamics simulation with TDDFT and intro-
duce the two-step k-point sampling method. In section 3,
we examine the performance of the two-step sampling pro-
cedure in both linear and nonlinear regimes, using linear
optical absorption and high-order harmonic generation in crys-
talline silicon. Finally, our finding is summarized in section 4.
Hereafter, atomic units are used unless stated otherwise.

2. Methods
2.1. Electron dynamics simulation

First, we briefly revisit an electron dynamics simulation based
on TDDFT [19, 24]. The details of the method are described
elsewhere [20]. Light-induced electron dynamics in solids
is described by the following time-dependent Kohn—Sham
equation,

o R
iEubk(r’ 1) = h(Oupk(r, 1), (D

where b is the band index, k is the Bloch wavevector, and
upk(r,t) is the periodic part of the time-dependent Bloch
orbital. The time-dependent Kohn—Sham Hamiltonian izk(t) is
given by

p+k+ADP

I (1) = 5

+ Dion + VHxe [ptr, D], ()
where A(?) is a time-varying spatially uniform vector poten-
tial, which is related to an external laser electric field by
E() = —A(f). The ionic potential is denoted as
Uion and may consist of non-local operators via
the norm conserving pseudopotential approximation [25,
26]. The Hartree—exchange—correlation potential is denoted
as vhxe [p(r,1)] and is a functional of the electron density
p(r, 1), defined as

1 )
1) = — dk 8 , 3
o, 1) §b - /B dklusatr.0) 3)

where Qpz is the volume of the Brillouin zone. Note
that all electronic orbitals wuy(r,f) are coupled with
each other through the electron density p(r,f) in the
Hartree—exchange—correlation potential vy [p(r, 1)].

Once the time evolution of the Kohn—Sham orbitals are
evaluated with equation (1), one can compute physical quanti-
ties as a function of time with

dr ) (r, DOupx(r, 1, (4)

1
o) = — / dk
Xb: QBZ BZ cell
where O(¢) is a physical quantity and O is the corresponding
operator. For example, the current density as a function of time
can be evaluated with

1 1

J@) = — d [ drug 0

Qeen 5~z /o7 Jeen
X T (Oupr(r, 1), 5)

where g is the volume of the cell and the kinetic momentum
operator 7 (¢) is defined by

1
(1) = 7

o] (®)
In practical calculations, the Brillouin zone integral in
equations (3) and (4) is numerically evaluated as

Ny N N3

- 1
A f®~ G > D D S ) (D

ny=1ny=1n3=1

1

Oz Jz

where the integral is approximated by finite sampling of
k-points. One of the most widely used approaches is
Monkhorst—Pack sampling [27], which is given by
21’11—N1—1 an—Nz—l
kyynyny = b b
s 2N, I A ?
n 2}’13 — N3 —1
2N

bs, ®)

where b are the primitive reciprocal lattice vectors.

To obtain numerically converged results for the Brillouin
zone integral equation (7), one needs to employ a sufficiently
large number of sampling points. As will be demonstrated
later, a huge number of k-points are required to obtain cer-
tain optical properties to reflect the continuous nature of the
energy band of solids. Since all orbitals at different k-points
are coupled with each other through the electron density p(r, t),
all of the states have to be propagated simultaneously. Hence,
the computation of optical properties requires massive parallel
computation for practical applications. However, such massive
parallel computation is not usually efficient due to commu-
nication among different processes and their synchronization.
Furthermore, larger supercomputers are often not easily acces-
sible. Therefore, a decomposition of such a large simulation
into a set of relatively small simulations is desirable from
the viewpoints of computational efficiency and simulation
portability.

2.2. Two-step Birillouin zone sampling

Here, we consider a method to decompose a large electron-
dynamics simulation into a set of relatively small calculations.
For this purpose, we evaluate the Brillouin zone integral of
equation (7) with the following extended sampling:
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Here, the sampling k-points are defined as

2}’11—N1—1+2qm

knl,nz,n3,m = 2N1 b1
2}’12—N2— 1 +2pm
b
+ 2N 2
2n3 — N3 — 1 4+ 2ry,
bs, 10
+ A 3 (10)

where (q,,, p,,» 'm) are uniform sample points in (0, 1) x
(0,1) x (0,1) in R?. To generate uniform sample points, one
may employ a (quasi) random number generator. In this work,
we employ the Halton sequence [28] based on 2, 3, and 5 to
generate uniform sample points, (g,,, P> 7'm)-

Importantly, the integral of the left-hand side of equation (9)
can be exactly evaluated with the right-hand side in the large
Ny limit, even for finite numbers of N, N,, and N3, because
the additional degree of freedom, (g,,,, p,,, 7'm), densely samples
the region discretized by the original Monkhorst—Pack sam-
pling in equation (8). Therefore, one can evaluate the Brillouin
zone integral by the two-step sampling by a coarse sampling
first with Ny X N, x Nsk-points and a dense second sampling
with (quasi) random numbers, (q,,, p,,,» 'm)-

In practical calculations, we employ the following two steps
of the k-point sampling for two different purposes. The first
sampling with N; x N, X N3k-points is employed to provide
the converged time-dependent exchange—correlation potential
vixe [p(r, 1)] and the converged Kohn—Sham orbitals upi(r, £).
Once converged Kohn—Sham orbitals are obtained with the
first sampling, one can accurately evaluate observables at each
k-point as f(k) = Zb<ubk(t)|0\ubk(t)>. Then, the second sam-
pling with Ny points is employed to provide the converged
observable with the Brillouin zone integral, equation (9).
Hence, we propose the following two-step procedure for Bril-
louin zone sampling:

(a) Provide Ny uniform sample points (g,,, p,,» 'm) in (0, 1) x
(0,1) x (0, 1).

(b) For each sample point of (g, p,."n), further pro-
vide N; X N, x N3 sample points with the shifted
Monkhorst—Pack grid with equation (9).

(c) For each sample point of (g,,, p,,, '), independently per-
form TDDFT simulations with N; X N, X N3k-points
and compute physical quantities O,,(f).

(d) Evaluate the average of all the TDDFT simulations as
Ot = Y2, 0u(0)/Ny.

The above procedure provides the converged observable
O(t) if N1, N, and N3 are large enough to provide converged
Kohn—Sham orbitals and Ny is large enough to provide the
converged value of the Brillouin zone integral in equation (9).
Within these conditions, one can decompose a large TDDFT

simulation into relatively small simulations with N| X N, X
N3 k-points.

3. Results and discussion

In this section, we examine the performance of the two-step
Brillouin zone sampling procedure introduced in section 2.2.
For this purpose, we consider two kinds of electron dynamics
in solids. One is the linear response of solids to an impul-
sive distortion, while the other is the high-order harmonic
generation under an intense light pulse. For both examples,
we employ crystalline silicon. All calculations in this work
have been performed with Octopus code [29]. The primitive
cell of crystalline silicon, which contains two silicon atoms,
is employed. The real-space grid is discretized into 15° grid
points. For the description of electron—ion interaction, the
Hartwigsen—Goedecker—Hutter pseudopotential is employed
[30]. To describe electron—electron interaction, the adiabatic
local density approximation is employed [31].

3.1. Linear response calculation in time-domain

First, we consider a linear response of solids to light. In prac-
tice, we compute the dielectric function of silicon with the
real-time method [20, 24]. For this purpose, we employ the
following impulsive distortion as a perturbation,

E(t) = —koesd (1), (11)

where ky is the strength of the impulsive field, and ep is
a unit vector along the [-direction. Under this impulsive
field, we compute the electron dynamics by solving the time-
dependent Kohn—Sham equation, equation (1), and evaluate
the induced current 0J(¢), defined as 6J(t) = J(¢t) — J(t < 0)
with equation (5). The optical conductivity o,3(w) tensor is
defined with the current and impulsive field as

Ja(w) = gap(w)k, (12)

where J,(w) is the a-component of the Fourier transform of

oJ (@), .
Jo(w) = / dre'wy, <t> e, - 0J(1),
0 Tw

with the window function Wy (x) =1 — 3x?> +2x3 in the
domain 0 < x < 1 and equal to zero outside. The duration
of the window function, T, is set to 30 fs. Furthermore, the
dielectric function is given by

13)

6"'4 a?(w)

€as(w) = (14)
Since silicon is an isotropic material, the dielectric func-
tion tensor is described by a single component as €,3(w) =
6(&))(5@5.

As a reference to assess the two-step Brillouin zone sam-
pling, we first evaluate the dielectric function of silicon with
the original Monkhorst—Pack sampling, equation (8). Figure 1
shows the time-profile of the induced current, §J(¢), with the
impulsive distortion, equation (11). One sees that the cur-
rent shows oscillatory behavior with damping. By applying
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Figure 1. Computed electric current in crystalline silicon induced
by an impulsive distortion, equation (11). The simulation is
performed with Monkhorst—Pack sampling with 643 k-points.
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Figure 2. Imaginary part of the dielectric function of silicon
computed with the Monkhorst—Pack method. Results with different
numbers of k-points, Ny = N| X N, X N3, are shown.

the Fourier transformation, equation (13), to the current, we
further evaluate the dielectric function.

Figure 2 shows the imaginary part of the dielectric func-
tion of silicon computed with the Monkhorst—Pack method.
The results with different numbers of k-points, Ny = N| X
N> x N3, are shown. One sees that the dielectric function
becomes smoother for the larger number of k-points, and it is
almost converged with N, = 32%k-points. On the other hand,
the dielectric function becomes less smooth for a smaller num-
ber of k-points, reflecting the discretization of the continuous
energy bands. Hence, a fine k-point sampling is indispensable
to describe the continuity of the energy band, in addition to
the convergence of each Kohn—Sham orbital. Assuming that
the convergence of each Kohn—Sham orbital is realized with a
relatively small number of k-points, we next apply the two-step
Brillouin zone sampling to the linear response calculation.

To examine the two-step Brillouin zone sampling proce-
dure, we fix the number of sampling points, Ny = N| X N, X
N3 in equation (8), to 83 in this work unless stated otherwise.

60 |

50 r

40

Im[e(w)]

10 |

25 3 3.5 4 4.5 5
Phoron energy (eV)

Figure 3. Imaginary part of the dielectric function of silicon
computed with the two-step Brillouin zone sampling method.
Results with different numbers for the second sampling, Ny, are
shown. As a reference, the result of the Monkhorst—Pack method
with 643k-points is also shown.

Note that N should be large enough to provide well-converged
Kohn—Sham orbitals. In contrast, N, does not need to be
large enough to accurately evaluate the Brillouin zone integral
since the fine k-point sampling in the Brillouin zone can be
addressed by the second sampling with the shift of (g,,, p,,, Fm)
in equation (9). In practical calculations, we first produce Ny
sets of (quasi) random numbers, (g,,, p,,» 'm)- We then perform
the TDDFT simulation with N} k-points for each set of (quasi)
random numbers and compute the induced current 6.J,,(¢) for
each shift (g,,, p,,» 'm) from m = 1 to Ny. Finally, we average
the current for different shifts as §J(f) = iZZZﬁJm(t) and
evaluate the dielectric function with the above procedure.

Figure 3 shows the imaginary part of the dielectric function
computed with the two-step Brillouin zone sampling method.
The results with different numbers of second-sampling points,
Ny, are shown. Since the number of k-points of the shifted
Monkhorst—Pack sampling N is fixed to 83, the total num-
ber of k-points in the two-step sampling method is given
by Ny X N = 83Ny. As a reference, the result of the origi-
nal Monkhorst—Pack method with N, = 643 k-points is shown
as a black-dashed line in figure 3. As seen from figure 3,
the results of the two-step sampling procedure are systemat-
ically improved by increasing Ny. In the present case, as seen
from figure 3, Ny = 64 is sufficient to provide a converged
result identical to the original converged result in figure 2.
These results indicate that the present number of k-points
for each TDDFT simulation, N, = 83, is sufficient to accu-
rately describe the Hartree—exchange—correlation potential
and time-dependent Kohn—Sham orbitals.

To demonstrate the importance of the number of sampling
points, Ny, in equation (10), we compute the dielectric func-
tion of silicon as performed in the above analysis but by fixing
Ny to 1. Figure 4 shows the computed results for different
numbers of second-sampling points, Ny, but fixing Ny to 1.
Here, the total number of k-points in the two-step sampling
method is given by Ny x Ny = Ng. As seen from figure 4, the
results of the two-step sampling method do not converge to the
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Figure 4. Imaginary part of the dielectric function of silicon
computed with the two-step Brillouin zone sampling method.
Results with different numbers for the second sampling, Ny, are
shown. The shaded area denotes the error bars that are evaluated as
the standard error from Ny data sets. As a reference, the result of the
Monkhorst—Pack method with 64°k-points is also shown.

converged result of the original method (black-dashed line)
when N; is fixed to 1. This indicates that the sufficiently
large number of sampling points, Ny, has to be employed
in the shifted Monkhorst—Pack sampling, equation (10) to
obtain correct results. If Ny is not sufficiently large, the elec-
tron density and the Hartree—exchange—correlation potential
are not well converged, and the resulting dynamics deviate
from the correct dynamics. Therefore, one needs to check the
convergence for Ny in the two-step sampling method.

Note that the two-step Brillouin zone sampling method
enables employment of a smaller number of k-points for each
decomposed simulation and all simulations can be performed
independently. In contrast, in the original method with the
time-dependent Kohn—Sham equation, all k-points are coupled
with each other, and all k-points have to be propagated simul-
taneously with synchronization. Therefore, the two-step Bril-
louin zone sampling method can be seen as the decomposition
of alarge TDDFT simulation into a set of relatively small sim-
ulations, offering merits from the viewpoint of computational
efficiency. One of the most important merits is improvement
of the parallel efficiency since decomposition into indepen-
dent simulations reduces synchronization and communication
among all k-points. Especially for a large simulation, synchro-
nization and communication tend to occupy a large part of
the total computational time. Hence, the two-step Brillouin
zone sampling method can be used to reduce computational
cost for large simulations. Another merit of the decomposi-
tion of a large simulation is the portability improvement of
simulations across relatively small supercomputers and cluster
machines. Thanks to the decomposition, relatively small simu-
lations can be performed on a relatively small cluster machine.
Furthermore, each simulation can be performed independently
on each different machine. Hence, one can efficiently use var-
ious kinds of machines with the two-step sampling method
and the portability of electron dynamics simulations can be
enhanced.

Number of processors

Figure 5. Weak scaling performance of the electron dynamics
simulation for crystalline silicon.

To demonstrate the above merits of the two-step Brillouin
zone sampling method, we evaluate the weak scaling effi-
ciency for the parallel computation of the electron dynam-
ics in solids. The weak scaling performance is analyzed by
increasing both the number of processors and the problem
size. By construction, the two-step Brillouin zone sampling
method achieves the perfect scaling efficiency. Therefore, here
we analyze the weak-scaling efficiency of the original k-
point sampling method to demonstrate the improvement of
the parallel efficiency by the two-step sampling method. The
analysis was performed on the RAVEN HPC system of the
Max-Planck computing and data facility. For practical anal-
ysis, we evaluate the execution time of the electron dynam-
ics simulation per time step by changing the number of pro-
cessors in the parallel computation but fixing the ratio of
the number of k-points and the number of processors. For
the smallest simulation, we employ 8 k-points in the elec-
tron dynamics simulation for crystalline silicon by using 72
CPU cores. Figure 5 shows the evaluated weak scaling effi-
ciency of the electron dynamics simulation with the origi-
nal k-point sampling method as a function of the number
of CPU cores (processors). Here, the efficiency is defined
by the ratio of the execution time per time step for with n,
CPU cores, Tg(n.), and that with 72 CPU cores, Tg(n. =
72): efficiency = Tg(n. = 72)/Tg(n.). As expected, the scal-
ing efficiency decreases with the increase in the number of
processors due to the communication and synchronization in
the original method. By contrast, the two-step Brillouin zone
sampling method offers the perfect weak scaling efficiency
since a computationally large simulation can be decomposed
into small independent simulations. Hence, the reduction of
the efficiency of the original approach is equivalent to the
improvement of the two-step sampling method. Furthermore,
we note that the weak scaling efficiency cannot be evaluated
for a larger problem size than 184 320 k-points in the present
analysis since the number of required CPU cores exceeds
the maximum number of available CPU cores for a general
simulation job, which is 72 CPU cores x 360 nodes = 25920
CPU cores on the RAVEN HPC system. This indicates that
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if the maximum simulation run time, which is usually 24 h,
is defined on a supercomputer, a large size problem may not
be solved with the original k-point sampling method since all
the k-points have to be propagated simultaneously. By con-
trast, even such a large simulation may be performed with the
two-step Brillouin zone sampling method because the large
simulation is decomposed into relatively small simulations,
and the decomposed simulations can be executed indepen-
dently as different simulation jobs. Therefore, the improve-
ment of the portability of the two-step sampling method is also
demonstrated here.

In addition to the above merits from the viewpoint of com-
putational resources, the two-step sampling method enables
the efficient and straightforward convergence check for k-
point sampling. For the case of the original method, as shown
in figure 1, the results of two different simulations must be
compared. Furthermore, one of the simulations is always dis-
carded, without being analyzed, since the other converged sim-
ulation is used for analysis. On the other hand, in the two-step
sampling method, all simulation results have been integrated
into the final results and no computational resources are wasted
for the convergence check of Ny. Moreover, this feature of the
two-step sampling method offers an additional degree of free-
dom to analyze the simulation results statistically. The results
of the two-step sampling method such as figure 3 can be seen
as the average of Ny sets of different simulation results. Hence,
by analyzing Ny data sets, the standard error of the mean, o,
of the results can be evaluated. Figure 6 shows the imaginary
part of the dielectric function of silicon computed with the two-
step Brillouin zone sampling method for different numbers of
second-sampling points, Ny, as shown in figure 3. While only
the average values of the Ny data sets are shown in figure 3,
the shaded area in figure 6 denotes the error bars for the mean.
One can estimate the quality of the convergence of the calcu-
lation from the size of the error bars. In this way, the two-step
sampling method offers a novel degree of freedom for better
control of the convergence of the calculation. Note that, since
the Halton sequence is employed in the present work, the above
statistical analysis does not truly provide the standard error in
the sense of Monte-Carlo simulation. However, one can sim-
ply employ random numbers instead of the Halton sequence
and properly evaluate the standard error.

3.2. High-order harmonic generation in solids

In the previous section, we examined the two-step Brillouin
zone sampling method in the linear response regime. In this
section, we extend analysis to a highly nonlinear regime. As
an example of nonlinear phenomena, we consider high-order
harmonic generation in silicon under an intense laser field.
According to previous work [22], we employ the following
form of the vector potential as an external field

A@) = —@eL cos’ <7r (t - TL)) sin (wL <t - TL)) ;
wo 2 2
(15)

in the domain 0 < < T, and equal to zero outside the
domain. Here, Ej is the peak field strength, wy is the mean
frequency of the pulse, er is the polarization direction, and
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Figure 6. Imaginary part of the dielectric function of silicon
computed with the two-step Brillouin zone sampling method.
Results with different numbers for the second sampling, Ny, are
shown. The shaded area denotes the error bars that are evaluated as
the standard error from Ny data sets. As a reference, the result of the
Monkhorst—Pack method with 64k-points is also shown.

Ty, is the full duration of the pulse. In this work, we set Ej to
8.69 MV cm ™!, wy to 413.3 meV/h, ey to the (100)-direction,
and Ty to 25 fs. Figure 7(a) shows the time profile of the
electric field E(7) defined as E(1) = — $A(1).

We solve the time-dependent Kohn—Sham equation,
equation (1), with the vector potential given by equation (15)
and compute the electric current with equation (5). Figure 7(b)
shows the (100)-component of the current induced by the field
as a function of time, J(¢). We further evaluate the power
spectrum of the emitted harmonics with the following Fourier
analysis of the current

2

Imo(w) = wz‘ / dre“ Wner - J0)| . (16)
where W(¢) is a window function given by
Ti
W(t) = cos* <7r (t - ;)) , (17)

in the domain, 0 < ¢t < Ty, and zero outside.
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Figure 7. The computed current in silicon under the laser field given
by equation (15). The simulation is performed using the
Monkhorst—Pack sampling with 643 k-points.

Spectral intensity (arb. units)
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Figure 8. Computed spectrum of emitted harmonics with the
Monkhorst—Pack method. The results for different numbers of
k-points are shown.

To examine the two-step Brillouin zone sampling method,
we first study the convergence of the high-order harmonic gen-
eration with respect to the number of k-points for the origi-
nal Monkhorst—Pack sampling, equation (8). Figure 8 shows
the computed spectra for different numbers of k-points. One
sees that the intensity of the emitted harmonics is significantly
overestimated for unconverged results with a smaller number
k-points and the signal is reduced by a few orders of magni-
tude with the increase of the number of k-points. These results
indicate that the emitted harmonics are significantly canceled
among various k-points and, hence, fine k-point sampling is
indispensable for the evaluation of high-order harmonic gen-
eration. As seen from the figure, the well-converged result can
be obtained with 32° k-points with Monkhorst—Pack sampling.

We then study the convergence behavior of the two-step
Brillouin zone sampling method. As described in the previ-
ous section, section 3.1, we fix the number of first-sampling
points to Ny = N; X Ny X N3 = 83 in equation (9). Then,

Spectral intensity (arb. units)

0 1 2 3 4 5 6 7 8
Phoron energy (eV)

Figure 9. Computed spectrum of emitted harmonics with the
two-step Brillouin zone sampling method. The results for different
numbers of the second sampling, Ny, are shown. As a reference, the
converged results of the Monkhorst—Pack method with 64°k-points
is also shown.

we repeat the TDDFT simulation Ny times with the shifted
Monkhorst—Pack sampling, equation (10). Finally, we evalu-
ate the average of the induced current and compute the high-
order harmonic generation spectrum from the averaged cur-
rent. Figure 9 shows the computed high-harmonics spectra
with the two-step Brillouin zone sampling method. As a refer-
ence, the result of the original Monkhorst—Pack sampling with
643k-points is also shown as a black-dashed line. The results
of the two-step Brillouin zone sampling method approach the
converged result of the original Monkhorst—Pack sampling by
increasing the number of secondary sampling, Ny . This result
indicates that the significant cancellation of emitted harmonics
among various k-points can be well described by the aver-
age of many independent runs of the TDDFT simulation with
a relatively small number of k-points. Therefore, the valid-
ity of the two-step Brillouin zone sampling method has been
demonstrated in the nonlinear regime.

4. Summary

In conventional simulations for real-time electron dynamics
with TDDFT, all Kohn—Sham orbitals are coupled with each
other across all k-points via the Hartree—exchange—correlation
potential, vy [p(r, 1)]. Therefore, all orbitals must be propa-
gated simultaneously. For optical responses of solids, one may
need a very fine k-point sampling to accurately describe the
continuity of the energy bands of solids and the computational
cost of such simulations become large. For efficient computa-
tion of such simulations, we developed a Brillouin zone inte-
gration scheme for real-time propagation of electronic sys-
tems by decomposing a simulation with a large number of
k-points into a set of simulations with a relatively small num-
ber of k-points, based on the two-step Brillouin zone sampling
described in equation (9).

We examined the performance of the two-step Brillouin
zone sampling method for both linear and nonlinear regimes,
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computing the linear optical property and high-order har-
monic generation of silicon. In both regimes, the conver-
gence of the two-step scheme to the converged results of
the Monkhorst—Pack method has been demonstrated. These
results indicate that the convergence of each Kohn—Sham
orbital and Hartree—exchange—correlation potential can be
achieved with a relatively small number of k-points while
fine k-point sampling is required to compute the observables
due to the continuity of energy bands. In the two-step sam-
pling scheme, one can employ a relatively small number of
k-point for the first sampling to obtain converged Kohn—Sham
orbitals, while the fine k-point sampling can be performed by
secondary sampling with (quasi) random numbers. Hence, the
requirements of the convergence for both Kohn—Sham orbitals
and continuity of energy bands can be efficiently realized.

The decomposition of a large simulation into a set of inde-
pendent simulations can improve the efficiency of parallel
computation since communication and synchronization over-
head can be reduced. Furthermore, since small simulations
may be executed on relatively small cluster machines, the sim-
ulation portability across various types of computers can be
enhanced, enabling efficient use of computational resources
with a novel degree of freedom.
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